

Documentation

A jazzy skin for the Django admin interface.

This documentation covers version 2.14.1 of Grappelli. Grappelli is a grid-based alternative/extension to the Django [http://www.djangoproject.com] administration interface.

Note

Grappelli 2.14.1 requires Django 2.2. More on Versions and Compatibility.

Installation & Setup

	Quick start guide
	Installation

	Setup

	Testing

	Customization
	Available Settings

	Collapsibles

	Inline Sortables

	Rearrange Inlines

	Related Lookups

	Autocomplete Lookups

	Using TinyMCE

	Changelist Templates

	Changelist Filters

	Switch User

	Clean input types

Dashboard

	Dashboard Setup
	Custom dashboard

	Custom dashboards for multiple sites

	Dashboard API
	The Dashboard class

	The DashboardModule class

	The Group class

	The LinkList class

	The AppList class

	The ModelList class

	The RecentActions class

	The Feed class

Internals

	Internals
	Templates

	Javascripts

Help

	Help
	FAQ

	Best Practice

	Third Party Applications

	Troubleshooting

	Django Issues

	Grappelli 2.14.x Release Notes

	Contributing

	Changelog

Code

https://github.com/sehmaschine/django-grappelli

Website

http://www.grappelliproject.com

Discussion

Use the Grappelli Google Group [http://groups.google.com/group/django-grappelli] to ask questions or discuss features.

Versions and Compatibility

Grappelli is always developed against the latest stable Django release and is NOT tested with Django’s master branch.

	Grappelli 2.14.1 (February 10th, 2020): Compatible with Django 3.0

	Grappelli 2.13.4 (February 10th, 2020): Compatible with Django 2.2

	Grappelli 2.10.4 (November 1st, 2018): Compatible with Django 1.11 (LTS)

Current development branches:

	Grappelli 2.14.2 (Development version for Django 2.2, see branch Stable/2.14.x)

	Grappelli 2.13.5 (Development version for Django 2.2, see branch Stable/2.13.x)

	Grappelli 2.10.5 (Development version for Django 1.11, see branch Stable/2.10.x)

Older versions are available at GitHub, but are not supported anymore.

Quick start guide

For using Grappelli 2.14.1, Django 2.2 [http://www.djangoproject.com] needs to be installed and an Admin Site [http://docs.djangoproject.com/en/2.2/ref/contrib/admin/] has to be activated.

Installation

$ pip install django-grappelli

Go to https://github.com/sehmaschine/django-grappelli if you need to download a package or clone/fork the repository.

Setup

Open settings.py and add grappelli to your INSTALLED_APPS (before django.contrib.admin):

INSTALLED_APPS = (
 'grappelli',
 'django.contrib.admin',
)

Add URL-patterns. The grappelli URLs are needed for related–lookups and autocompletes. Your admin interface is available with the URL you defined for admin.site:

urlpatterns = [
 path('grappelli/', include('grappelli.urls')), # grappelli URLS
 path('admin/', admin.site.urls), # admin site
]

Add the request context processor (needed for the Dashboard and the Switch User feature):

TEMPLATES = [
 {
 ...
 'OPTIONS': {
 'context_processors': [
 ...
 'django.template.context_processors.request',
 ...
],
 },
 },
]

Collect the media files:

$ python manage.py collectstatic

Testing

Start the devserver and login to your admin site:

$ python manage.py runserver <IP-address>:8000

Check if everything looks/works as expected. If you’re having problems, see Troubleshooting.

Customization

While Grappelli is mainly about the look & feel of the admin interface, it also adds some features.

Available Settings

	GRAPPELLI_ADMIN_TITLE

	The Site Title of your admin interface. Change this instead of changing index.html.

	GRAPPELLI_AUTOCOMPLETE_LIMIT

	Number of items to show with autocomplete drop–downs.

	GRAPPELLI_AUTOCOMPLETE_SEARCH_FIELDS

	A dictionary containing search patterns for models you cannot (or should not) alter.

	GRAPPELLI_SWITCH_USER

	Set to True if you want to activate the switch user functionality.

	GRAPPELLI_SWITCH_USER_ORIGINAL

	A function which defines if a User is able to switch to another User (returns either True or False).
Defaults to all superusers.

	GRAPPELLI_SWITCH_USER_TARGET

	A function which defines if a User is a valid switch target (returns either True or False).
Defaults to all staff users, excluding superusers.

	GRAPPELLI_CLEAN_INPUT_TYPES

	Replaces HTML5 input types (search, email, url, tel, number, range, date, month, week, time, datetime, datetime-local, color) due to browser inconsistencies. Set to False in order to not replace the mentioned input types.

Collapsibles

Use the classes property in order to define collapsibles for a ModelAdmin [http://docs.djangoproject.com/en/1.11/ref/contrib/admin/#modeladmin-objects] or an InlineModelAdmin [http://docs.djangoproject.com/en/1.11/ref/contrib/admin/#inlinemodeladmin-objects]. Possible values are grp-collapse grp-open and grp-collapse grp-closed:

class ModelOptions(admin.ModelAdmin):
 fieldsets = (
 ('', {
 'fields': ('title', 'subtitle', 'slug', 'pub_date', 'status',),
 }),
 ('Flags', {
 'classes': ('grp-collapse grp-closed',),
 'fields' : ('flag_front', 'flag_sticky', 'flag_allow_comments', 'flag_comments_closed',),
 }),
 ('Tags', {
 'classes': ('grp-collapse grp-open',),
 'fields' : ('tags',),
 }),
)

class StackedItemInline(admin.StackedInline):
 classes = ('grp-collapse grp-open',)

class TabularItemInline(admin.TabularInline):
 classes = ('grp-collapse grp-open',)

With StackedInlines [https://docs.djangoproject.com/en/1.11/ref/contrib/admin/#django.contrib.admin.StackedInline], an additional property inline_classes is available to define the default collapsible state of inline items (as opposed to the inline group):

class StackedItemInline(admin.StackedInline):
 classes = ('grp-collapse grp-open',)
 inline_classes = ('grp-collapse grp-open',)

Inline Sortables

For using drag/drop with inlines, you need to add a PositiveIntegerField to your Model:

class MyInlineModel(models.Model):
 mymodel = models.ForeignKey(MyModel)
 # position field
 position = models.PositiveSmallIntegerField("Position", null=True)
 class Meta:
 ordering = ['position']

Now, define the sortable_field_name with your InlineModelAdmin:

class MyInlineModelOptions(admin.TabularInline):
 fields = (... , "position",)
 # define the sortable
 sortable_field_name = "position"

The inline rows are reordered based on the sortable field (with a templatetag formsetsort). When submitting a form, the values of the sortable field are reindexed according to the position of each row.
We loop through each field of each row and check if the field has a value. If at least one value is given for a row, the sortable field is being updated. In order to exclude specific fields from this behaviour, use Sortable Excludes.

In case of errors (somewhere within the form), the position of inline rows is preserved. This also applies to rows prepared for deletion while empty rows are being moved to the end of the formset.

Besides using the drag/drop-handler, you are also able to manually update the position values. This is especially useful with lots of inlines. Just change the number within the position field and the row is automatically moved to the new position. Each row is being reindexed with submitting the form.

GrappelliSortableHiddenMixin

There is also GrappelliSortableHiddenMixin, which is a Mixin in order to hide the PositionField.
Please note that this Mixin works with a default sortable_field_name = "position".
Therefore, you only need to explicitly define the sortable_field_name if it’s named differently.

from grappelli.forms import GrappelliSortableHiddenMixin

class MyInlineModelOptions(GrappelliSortableHiddenMixin, admin.TabularInline):
 fields = (... , "position",)

explicitly defining the sortable is only necessary
if the sortable field name is not 'position'
class MyCustomInlineModelOptions(GrappelliSortableHiddenMixin, admin.TabularInline):
 fields = (... , "customposition",)
 sortable_field_name = "customposition"

Sortable Excludes

You may want to define sortable_excludes (either list or tuple) in order to exclude certain fields from having an effect on the position field. With the example below, the fields field_1 and field_2 have default values (so they are not empty with a new inline row). If we do not exclude this fields, the position field is updated for empty rows:

class MyInlineModelOptions(admin.TabularInline):
 fields = (... , "position",)
 # define the sortable
 sortable_field_name = "position"
 # define sortable_excludes
 sortable_excludes = ("field_1", "field_2",)

Rearrange Inlines

Sometimes it might make sense to not show inlines at the bottom of the page/form, but somewhere in–between. In order to achieve this, you need to define a placeholder with your fields/fieldsets in admin.py:

("Some Fieldset", {
 "classes": ("grp-collapse grp-open",),
 "fields": ("whatever",)
}),
("Image Inlines", {"classes": ("placeholder images-group",), "fields" : ()}),
("Another Fieldset", {
 "classes": ("grp-collapse grp-open",),
 "fields": ("whatever",)
}),

inlines = [ImageInlines]

The two classes for the placeholder are important. First, you need a class placeholder. The second class has to match the id of the inline–group.

Related Lookups

With Grappelli, you’re able to add the representation of an object beneath the input field (for fk– and m2m–fields):

class MyModel(models.Model):
 related_fk = models.ForeignKey(RelatedModel, verbose_name=u"Related Lookup (FK)")
 related_m2m = models.ManyToManyField(RelatedModel, verbose_name=u"Related Lookup (M2M)")

class MyModelOptions(admin.ModelAdmin):
 # define the raw_id_fields
 raw_id_fields = ('related_fk','related_m2m',)
 # define the related_lookup_fields
 related_lookup_fields = {
 'fk': ['related_fk'],
 'm2m': ['related_m2m'],
 }

With generic relations, related lookups are defined like this:

from django.contrib.contenttypes import generic
from django.contrib.contenttypes.models import ContentType
from django.db import models

class MyModel(models.Model):
 # first generic relation
 content_type = models.ForeignKey(ContentType, blank=True, null=True, related_name="content_type")
 object_id = models.PositiveIntegerField(blank=True, null=True)
 content_object = generic.GenericForeignKey("content_type", "object_id")
 # second generic relation
 relation_type = models.ForeignKey(ContentType, blank=True, null=True, related_name="relation_type")
 relation_id = models.PositiveIntegerField(blank=True, null=True)
 relation_object = generic.GenericForeignKey("relation_type", "relation_id")

class MyModelOptions(admin.ModelAdmin):
 # define the related_lookup_fields
 related_lookup_fields = {
 'generic': [['content_type', 'object_id'], ['relation_type', 'relation_id']],
 }

If your generic relation points to a model using a custom primary key, you need to add a property id:

class RelationModel(models.Model):
 cpk = models.IntegerField(primary_key=True, unique=True, editable=False)

 @property
 def id(self):
 return self.cpk

For the representation of an object, we first check for a callable related_label. If not given, __unicode__ is being used in Python 2.x or __str__ in Python 3.x.

Example in Python 2:

def __unicode__(self):
 return u"%s" % self.name

def related_label(self):
 return u"%s (%s)" % (self.name, self.id)

Example in Python 3:

def __str__(self):
 return "%s" % self.name

def related_label(self):
 return "%s (%s)" % (self.name, self.id)

Note

In order to use related lookups, you need to register both ends (models) of the relationship with your admin.site.

Autocomplete Lookups

Autocomplete lookups are an alternative to related lookups (for foreign keys, many–to-many relations and generic relations).

Add the staticmethod autocomplete_search_fields to all models you want to search for:

class MyModel(models.Model):
 name = models.CharField(u"Name", max_length=50)

 @staticmethod
 def autocomplete_search_fields():
 return ("id__iexact", "name__icontains",)

If the staticmethod is not given, GRAPPELLI_AUTOCOMPLETE_SEARCH_FIELDS will be used if the app/model is defined:

GRAPPELLI_AUTOCOMPLETE_SEARCH_FIELDS = {
 "myapp": {
 "mymodel": ("id__iexact", "name__icontains",)
 }
}

Defining autocomplete lookups is very similar to related lookups:

class MyModel(models.Model):
 related_fk = models.ForeignKey(RelatedModel, verbose_name=u"Related Lookup (FK)")
 related_m2m = models.ManyToManyField(RelatedModel, verbose_name=u"Related Lookup (M2M)")

class MyModelOptions(admin.ModelAdmin):
 # define the raw_id_fields
 raw_id_fields = ('related_fk','related_m2m',)
 # define the autocomplete_lookup_fields
 autocomplete_lookup_fields = {
 'fk': ['related_fk'],
 'm2m': ['related_m2m'],
 }

This also works with generic relations:

from django.contrib.contenttypes import generic
from django.contrib.contenttypes.models import ContentType
from django.db import models

class MyModel(models.Model):
 # first generic relation
 content_type = models.ForeignKey(ContentType, blank=True, null=True, related_name="content_type")
 object_id = models.PositiveIntegerField(blank=True, null=True)
 content_object = generic.GenericForeignKey("content_type", "object_id")
 # second generic relation
 relation_type = models.ForeignKey(ContentType, blank=True, null=True, related_name="relation_type")
 relation_id = models.PositiveIntegerField(blank=True, null=True)
 relation_object = generic.GenericForeignKey("relation_type", "relation_id")

class MyModelOptions(admin.ModelAdmin):
 # define the autocomplete_lookup_fields
 autocomplete_lookup_fields = {
 'generic': [['content_type', 'object_id'], ['relation_type', 'relation_id']],
 }

If your generic relation points to a model using a custom primary key, you need to add a property id:

class RelationModel(models.Model):
 cpk = models.IntegerField(primary_key=True, unique=True, editable=False)

 @property
 def id(self):
 return self.cpk

If the human-readable value of a field you are searching on is too large to be indexed (e.g. long text as SHA key) or is saved in a different format (e.g. date as integer timestamp), add a staticmethod autocomplete_term_adjust to the corresponding model with the appropriate transformation and perform the lookup on the indexed field:

class MyModel(models.Model):
 text = models.TextField(u"Long text")
 text_hash = models.CharField(u"Text hash", max_length=40, unique=True)

 @staticmethod
 def autocomplete_term_adjust(term):
 return hashlib.sha1(term).hexdigest()

 @staticmethod
 def autocomplete_search_fields():
 return ("text_hash__iexact",)

For the representation of an object, we first check for a callable related_label. If not given, __unicode__ is being usedin Python 2.x or __str__ in Python 3.x.

Example in Python 2:

def __unicode__(self):
 return u"%s" % self.name

def related_label(self):
 return u"%s (%s)" % (self.name, self.id)

Example in Python 3:

def __str__(self):
 return "%s" % self.name

def related_label(self):
 return "%s (%s)" % (self.name, self.id)

Note

In order to use autocompletes, you need to register both ends (models) of the relationship with your admin.site.

Using TinyMCE

Grappelli already comes with TinyMCE and a minimal theme as well. In order to use TinyMCE, copy tinymce_setup.js to your static directory, adjust the setup (see TinyMCE Configuration [http://www.tinymce.com/wiki.php/Configuration]) and add the necessary javascripts to your ModelAdmin definition (see ModelAdmin asset definitions [https://docs.djangoproject.com/en/1.11/ref/contrib/admin/#modeladmin-asset-definitions]):

class Media:
 js = [
 '/static/grappelli/tinymce/jscripts/tiny_mce/tiny_mce.js',
 '/static/path/to/your/tinymce_setup.js',
]

Using TinyMCE with inlines is a bit more tricky because of the hidden extra inline. You need to write a custom template and use the inline callbacks to

	onInit: remove TinyMCE instances from the empty form.

	onAfterAdded: initialize TinyMCE instance(s) from the form.

	onBeforeRemoved: remove TinyMCE instance(s) from the form.

Note

TinyMCE with inlines is not supported by default.

If our version of TinyMCE does not fit your needs, add a different version to your static directory and change the above mentioned ModelAdmin setup (paths to js–files).

Warning

TinyMCE will be removed with version 3.0 of Grappelli, because TinyMCE version 4.x comes with a decent skin.

Changelist Templates

Grappelli comes with different change–list templates. To use the alternative templates, you need to add change_list_template to your ModelAdmin definition.

Filters as drop-down, automatically applied (default template)

The default template shows filters as a drop–down, selecting a single filter immediately applies the filter. This template supports use cases where single filters should be quickly applicable.

class MyModelOptions(admin.ModelAdmin):
 change_list_template = "admin/change_list.html"

Filters as drop-down, manually applied

This template shows filters as a drop-down, selected filters have to be applied manually by clicking an “Apply” button. This template supports use cases where multiple filters have to be selected and applied at the same time.

class MyModelOptions(admin.ModelAdmin):
 change_list_template = "admin/change_list_filter_confirm.html"

Filters in a sidebar, automatically applied

This template shows filters in a sidebar, selecting a single filter immediately applies the filter. This template supports use cases where single filters should be quickly applicable.

class MyModelOptions(admin.ModelAdmin):
 change_list_template = "admin/change_list_filter_sidebar.html"

Filters in a sidebar, manually applied

This template shows filters in a sidebar, selected filters have to be applied manually by clicking an “Apply” button. This template supports use cases where multiple filters have to be selected and applied at the same time.

class MyModelOptions(admin.ModelAdmin):
 change_list_template = "admin/change_list_filter_confirm_sidebar.html"

Changelist Filters

Grappelli comes with 2 different change–list filters. The standard filters are selects, the alternative filters are list of options (similar to djangos admin interface). To use the alternative filters, you need to add change_list_filter_template to your ModelAdmin definition:

class MyModelOptions(admin.ModelAdmin):
 change_list_filter_template = "admin/filter_listing.html"

Switch User

You sometimes might need to see the admin interface as a different user (e.g. in order to verify if permissions are set correctly or to follow an editors explanation). If you set GRAPPELLI_SWITCH_USER to True, you’ll get additional users with your user dropdown. Moreover, you can easily switch back to the original User.

Note

This functionality might change with future releases.

Warning

If you are using a custom user model and want to turn this feature on, pay attention to the following topics:

	if is_superuser is neither a field nor a property of your user model, you will have to set both GRAPPELLI_SWITCH_USER_ORIGINAL and GRAPPELLI_SWITCH_USER_TARGET to functions; failing to do so will break the admin area. If you followed the instructions in the Django docs [https://docs.djangoproject.com/en/1.11/topics/auth/customizing/#a-full-example], is_superuser won’t be a field nor a property of your user model. If you define is_superuser as a property of your model, the admin area will get back to work.

	if is_staff is not a field, and/or is_superuser is neither a field nor a property of your user model, the Grappelli tests will be broken (because e.g. of some user.is_staff = True instructions). This -again- is your case if you followed the Django docs on customizing user model [https://docs.djangoproject.com/en/1.11/topics/auth/customizing/#a-full-example], where is_staff is defined as a property (as opposite to a field).

Clean input types

With setting GRAPPELLI_CLEAN_INPUT_TYPES to True, Grappelli automatically replaces all HTML5 input types (search, email, url, tel, number, range, date month, week, time, datetime, datetime-local, color) with type="text". This is useful if you want to avoid browser inconsistencies with the admin interface. Moreover, you remove frontend form validation and thereby ensure a consistent user experience.

Note

This functionality might change with future releases.

Dashboard Setup

With the Django admin interface, the admin index page reflects the structure of your applications/models. With grappelli.dashboard you are able to change that structure and rearrange (or group) apps and models.

Note

grappelli.dashboard is a simplified version of Django Admin Tools [http://django-admin-tools.readthedocs.org/]: Bookmarks, Menus and the custom App Index are not available with Grappelli.

Open settings.py and add grappelli.dashboard to your INSTALLED_APPS (before grappelli, but after django.contrib.contenttypes). Check if the request context processor is being used:

INSTALLED_APPS = (
 'django.contrib.contenttypes',
 'grappelli.dashboard',
 'grappelli',
 'django.contrib.admin',
)

TEMPLATES = [
 {
 ...
 'OPTIONS': {
 'context_processors': [
 ...
 'django.template.context_processors.request',
 ...
],
 },
 },
]

Custom dashboard

To customize the index dashboard, you first need to add a custom dashboard, located within your project directory. Depending on the location of manage.py, you might need to add the project directory to the management command (see last example below):

$ python manage.py customdashboard # creates dashboard.py
$ python manage.py customdashboard somefile.py # creates somefile.py
$ python manage.py customdashboard projdir/somefile.py # creates somefile.py in projdir

The created file contains the class CustomIndexDashboard that corresponds to the admin index page dashboard. Now you need to add your custom dashboard. Open your settings.py file and define GRAPPELLI_INDEX_DASHBOARD:

GRAPPELLI_INDEX_DASHBOARD = 'yourproject.dashboard.CustomIndexDashboard'
GRAPPELLI_INDEX_DASHBOARD = { # alternative method
 'yourproject.admin.admin_site': 'yourproject.my_dashboard.CustomIndexDashboard',
}

If you’re using a custom admin site (not django.contrib.admin.site), you need to define the dashboard with the alternative method.

Custom dashboards for multiple sites

If you have several admin sites, you need to create a custom dashboard for each site:

from django.conf.urls.defaults import *
from django.contrib import admin
from yourproject.admin import admin_site

admin.autodiscover()

urlpatterns = patterns('',
 (r'^admin/', include(admin.site.urls)),
 (r'^myadmin/', include(admin_site.urls)),
)

To configure your dashboards, you could do:

$ python manage.py customdashboard dashboard.py
$ python manage.py customdashboard my_dashboard.py

Open your settings.py file and define GRAPPELLI_INDEX_DASHBOARD:

GRAPPELLI_INDEX_DASHBOARD = {
 'django.contrib.admin.site': 'yourproject.dashboard.CustomIndexDashboard',
 'yourproject.admin.admin_site': 'yourproject.my_dashboard.CustomIndexDashboard',
}

Dashboard API

This section describe the API of the Grappelli dashboard and dashboard modules.

The Dashboard class

Base class for dashboards.
The dashboard class is a simple python list that has two additional
properties:

	title

	The dashboard title, by default, it is displayed above the dashboard in a h2 tag.
Default: Dashboard

	template

	The template used to render the dashboard.
Default: grappelli/dashboard/dashboard.html

Here’s an example of a custom dashboard:

from django.core.urlresolvers import reverse
from django.utils.translation import ugettext_lazy as _
from grappelli.dashboard import modules, Dashboard

class MyDashboard(Dashboard):
 def __init__(self, **kwargs):
 Dashboard.__init__(self, **kwargs)

 # append an app list module for "Applications"
 self.children.append(modules.AppList(
 title=_('Applications'),
 column=1,
 collapsible=True,
 exclude=('django.contrib.*',),
))

 # append an app list module for "Administration"
 self.children.append(modules.AppList(
 title=_('Administration'),
 column=1,
 collapsible=True,
 models=('django.contrib.*',),
))

 # append a recent actions module
 self.children.append(modules.RecentActions(
 title=_('Recent Actions'),
 column=2,
 collapsible=False,
 limit=5,
))

The DashboardModule class

Base class for all dashboard modules.
Dashboard modules have the following properties:

	collapsible

	Boolean that determines whether the module is collapsible.
Default: True

	column (required)

	Integer that corresponds to the column.
Default: None

	title

	String that contains the module title, make sure you use the django gettext functions if your application is multilingual.
Set to '' if you need to suppress the title.

	css_classes

	A list of css classes to be added to the module div class attribute.
Default: None

	pre_content

	Text or HTML content to display above the module content.
Default: None

	post_content

	Text or HTML content to display under the module content.
Default: None

	template

	The template used to render the module.
Default: grappelli/dashboard/module.html

The Group class

Represents a group of modules:

from grappelli.dashboard import modules, Dashboard

class MyDashboard(Dashboard):
 def __init__(self, **kwargs):
 Dashboard.__init__(self, **kwargs)
 self.children.append(modules.Group(
 title="My group",
 column=1,
 collapsible=True,
 children=[
 modules.AppList(
 title='Administration',
 models=('django.contrib.*',)
),
 modules.AppList(
 title='Applications',
 exclude=('django.contrib.*',)
)
]
))

The LinkList class

A module that displays a list of links.

Link list modules children are simple python dictionaries that can have the
following keys:

	title

	The link title.

	url

	The link URL.

	external

	Boolean that indicates whether the link is an external one or not.

	description

	A string describing the link, it will be the title attribute of
the html a tag.

	target

	A string or boolean value describing what is the link target. To open
link in a new window/tab you can pass True or '_blank' value to
this parameter. When you pass an string value, it is directly used in
the target attribute of the generated a tag in the template.

Children can also be iterables (lists or tuples) of length 2, 3, 4, or 5.

Here’s an example of building a link list module:

from grappelli.dashboard import modules, Dashboard

class MyDashboard(Dashboard):
 def __init__(self, **kwargs):
 Dashboard.__init__(self, **kwargs)

 self.children.append(modules.LinkList(
 title='Links',
 column=2,
 children=(
 {
 'title': 'Python website',
 'url': 'http://www.python.org',
 'external': True,
 'description': 'Python programming language rocks!',
 'target': '_blank',
 },
 ['Django website', 'http://www.djangoproject.com', True],
 ['Some internal link', '/some/internal/link/'],
)
))

The AppList class

Module that lists installed apps and their models.
As well as the DashboardModule
properties, the AppList
has two extra properties:

	models

	A list of models to include, only models whose name (e.g.
“blog.models.BlogEntry”) match one of the strings (e.g. “blog.*”)
in the models list will appear in the dashboard module.

	exclude

	A list of models to exclude, if a model name (e.g.
“blog.models.BlogEntry”) match an element of this list (e.g.
“blog.*”) it won’t appear in the dashboard module.

If no models/exclude list is provided, all apps are shown.

Here’s an example of building an app list module:

from grappelli.dashboard import modules, Dashboard

class MyDashboard(Dashboard):
 def __init__(self, **kwargs):
 Dashboard.__init__(self, **kwargs)

 # will only list the django.contrib apps
 self.children.append(modules.AppList(
 title='Administration',
 column=1,
 models=('django.contrib.*',)
))
 # will list all apps except the django.contrib ones
 self.children.append(modules.AppList(
 title='Applications',
 column=1,
 exclude=('django.contrib.*',)
))

Note

This module takes into account user permissions. For
example, if a user has no rights to change or add a Group, then
the django.contrib.auth.Group model won’t be displayed.

The ModelList class

Module that lists a set of models.
As well as the DashboardModule
properties, the ModelList takes
two extra arguments:

	models

	A list of models to include, only models whose name (e.g.
“blog.models.BlogEntry”) match one of the strings (e.g. “blog.*”)
in the models list will appear in the dashboard module.

	exclude

	A list of models to exclude, if a model name (e.g.
“blog.models.BlogEntry”) match an element of this list (e.g.
“blog.*”) it won’t appear in the dashboard module.

Here’s a small example of building a model list module:

from grappelli.dashboard import modules, Dashboard

class MyDashboard(Dashboard):
 def __init__(self, **kwargs):
 Dashboard.__init__(self, **kwargs)

 self.children.append(modules.ModelList(
 title='Several Models',
 column=1,
 models=('django.contrib.*',)
))

 self.children.append(modules.ModelList(
 title='Single Model',
 column=1,
 models=('blog.models.BlogEntry',)
))

Note

This module takes into account user permissions. For
example, if a user has no rights to change or add a Group, then
the django.contrib.auth.Group model won’t be displayed.

The RecentActions class

Module that lists the recent actions for the current user.
As well as the DashboardModule
properties, the RecentActions
takes three extra keyword arguments:

	include_list

	A list of contenttypes (e.g. “auth.group” or “sites.site”) to include,
only recent actions that match the given contenttypes will be
displayed.

	exclude_list

	A list of contenttypes (e.g. “auth.group” or “sites.site”) to exclude,
recent actions that match the given contenttypes will not be
displayed.

	limit

	The maximum number of children to display.
Default: 10

Here’s an example of building a recent actions module:

from grappelli.dashboard import modules, Dashboard

class MyDashboard(Dashboard):
 def __init__(self, **kwargs):
 Dashboard.__init__(self, **kwargs)

 self.children.append(modules.RecentActions(
 title='Django CMS recent actions',
 column=3,
 limit=5,
))

The Feed class

Class that represents a feed dashboard module.

Note

This class requires the
Universal Feed Parser module [https://pypi.python.org/pypi/feedparser], so you’ll need to install it.

As well as the DashboardModule
properties, the Feed takes two
extra keyword arguments:

	feed_url

	The URL of the feed.

	limit

	The maximum number of feed children to display.
Default: None (which means that all children are displayed)

Here’s an example of building a recent actions module:

from grappelli.dashboard import modules, Dashboard

class MyDashboard(Dashboard):
 def __init__(self, **kwargs):
 Dashboard.__init__(self, **kwargs)

 self.children.append(modules.Feed(
 title=_('Latest Django News'),
 feed_url='http://www.djangoproject.com/rss/weblog/',
 column=3,
 limit=5,
))

Internals

	Templates

	Javascripts

Templates

Grappelli includes a Documentation about the HTML/CSS framework. If you’re using the default URL-pattern (see Quick start guide) you’ll find the documentation at /grappelli/grp-doc/ (by default, these URLs are commented out).

Javascripts

Grappelli only uses a subset of the original admin javascripts.

	If there’s only minor modifications, we use the original javascript (e.g. RelatedObjectLookups.js).

	If we add functionality, we use our own jQuery-plugins (e.g. jquery.grp_collapsible.js) or jQuery-widgets (e.g. jquery.grp_timepicker.js)

	If there are major modifications, we use our own files as well (e.g. jquery.grp_inlines.js).

Original Javascripts

in /static/admin/js/

	calendar.js, collapse.js, collapse.min.js, inlines.js, inlines.min.js, jquery.init.js, jquery.js, jquery.min.js, timeparse.js, DateTimeShortcuts.js

	not used (empty to prevent 404)

	actions.js, actions.min.js

	minor modifiations, marked with GRAPPELLI CUSTOM

	core.js

	original

	prepopulate, prepopulate.min.js

	original

	related-widget-wrapper.js

	original

	SelectBox.js

	original

	SelectFilter2.js

	minor modifiations, marked with GRAPPELLI CUSTOM (e.g. removed help-text, because trusted editors should know what to do)

	urlify.js

	original

	RelatedObjectLookups.js

	minor modifiations, marked with GRAPPELLI CUSTOM

Grappelli Javascripts

in /static/admin/js/

	jquery.grp_collapsible.js

	collapsibles

	jquery.grp_collapsible_group.js

	grouped collapsibles (inlines)

	jquery.grp_inlines.js

	inlines (tabular and stacked)

	jquery.grp_related_fk.js

	foreign-key lookup

	jquery.grp_related_m2m.js

	m2m lookup

	jquery.grp_related_generic.js

	generic lookup

	jquery.grp_autocomplete_fk.js

	foreign-key lookup with autocomplete

	jquery.grp_autocomplete_m2m.js

	m2m lookup with autocomplete

	jquery.grp_autocomplete_generic.js

	generic lookup with autocomplete

	jquery.grp_timepicker.js

	timepicker

	grappelli.js

	main grappelli js

	grappelli.min.js

	minified version of all Grappelli JS

Help

	FAQ

	Best Practice

	Third Party Applications

	Troubleshooting

	Django Issues

	Grappelli 2.14.x Release Notes

FAQ

Some questions, some answers.

Why should I use Grappelli?

If you are pleased with how the original admin interface looks, you probably shouldn’t. Grappelli is mainly about a consistent, grid-based style.

I need help!

see Troubleshooting.

Which Browser do I need with Grappelli?

We are testing with Firefox, Chrome and Safari. IE9 and Opera should work fine as well.

Can I use another editor than TinyMCE?

Of course (better use markdown anyway).

Why don’t you use Twitter Bootstrap?

For now, custom Compass-based stylesheets gives us much more options. But we do understand the need to easily customize the admin interface and we’re discussing this issue on a regular basis.

Do you guys cooperate with the Django–Devs?

Occasionally, we have been discussing features and implementations in the past.

How can I contribute?

Help is very much appreciated.

	Fork django-grappelli [https://github.com/sehmaschine/django-grappelli] and submit feedback/patches.

	Work on Django Tickets related to contrib.admin [https://code.djangoproject.com/query?status=assigned&status=new&status=reopened&component=contrib.admin&group=milestone&col=id&col=summary&col=status&col=owner&col=type&col=version&order=priority].

	Take a look at Django Issues.

What is your goal with Grappelli?

Our goal is that Grappelli will be redundant eventually (though we doubt that will happen).

Who develops Grappelli?

Grappelli is developed and maintained by Patrick Kranzlmüller & Axel Swoboda of vonautomatisch [http://www.vonautomatisch.at].

Best Practice

Some tips in order to make the most of Grappelli.

M2M horizontal/vertical

Most of the time, it’s probably better to use Autocompletes.

Radiolists/Checkboxlists

If you’re having more than (say) 5 items to choose from, avoid using this (esp. with tabular/stacked Inlines).

Third Party Applications

A list of 3rd-party applications compatible with Grappelli. Pleaes note that except of Django FileBrowser, these apps are not maintained by the team behind Grappelli. Compatibility with these apps is therefore not guaranteed and heavily relies on patches and pull-requests by the community.

Django FileBrowser

No additional setup is needed when installing the Django FileBrowser [https://github.com/sehmaschine/django-filebrowser] with Grappelli.

Django Reversion

Grappelli includes all necessary templates for Django Reversion [https://github.com/etianen/django-reversion/].

Note

grappelli needs to be before reversion within INSTALLED_APPS.

Django Smuggler

Grappelli includes all necessary templates for Django Smuggler [https://github.com/semente/django-smuggler/].

Note

grappelli needs to be before smuggler within INSTALLED_APPS.

Django Constance

Grappelli includes the necessary template for Django Constance [https://github.com/comoga/django-constance/].

Note

grappelli needs to be before constance within INSTALLED_APPS.

Django Import-Export

Grappelli includes the necessary template for Django Import-Export [https://github.com/django-import-export/django-import-export/].

Note

grappelli needs to be before import_export within INSTALLED_APPS.

Troubleshooting

Sometimes you might have a problem installing/using Grappelli.

Check your setup

First, please check if the problem is caused by your setup.

	Read Quick start guide and Customization.

	Check if the static/media files are served correctly.

	Make sure you have removed all customized admin templates from all locations in TEMPLATE_DIRS paths or check that these templates are compatible with Grappelli.

Check issues

If your setup is fine, please check if your problem is a known issue.

	Read Django Issues in order to see if your problem is indeed related to Grappelli.

	Take a look at all Grappelli Issues [https://github.com/sehmaschine/django-grappelli/issues] (incuding closed) and search the Grappelli Google-Group [http://groups.google.com/group/django-grappelli].

Add a ticket

If you think you’ve found a bug, please add a ticket [https://github.com/sehmaschine/django-grappelli/issues] and follow the guidelines for contributing [https://github.com/sehmaschine/django-grappelli/blob/master/CONTRIBUTING.rst].

Django Issues

There are some known problems with the Django admin interface. I’m going to list them here in order to avoid confusion (because the problems are not related to Grappelli whatsoever).

see http://code.djangoproject.com/wiki/DjangoDesign

Harcoded Stuff

This means HTML markup within views (instead of using templates).
There’s a lot of this within the admin interface and therefore it’s just not possible to style some elements. For other elements, we need to use ugly hacks or strange CSS.

The solution is to implement floppy-forms (https://github.com/brutasse/django-floppyforms) with Django.

Javascripts

Some Javascripts are about 5 years old. Others are pretty new. Some are jQuery, some not. Still a bit messy and hard to customize.

see Javascripts.

Reordering Edit-Inlines

First, the can_order attribute is not available with the admin interface. Second, in case of errors, formsets are not returned in the right order. Therefore, reordering inlines is currently only possible with some hacks.

see http://code.djangoproject.com/ticket/14238

HTML5 input types

There is unpredictable behaviour with certain input types (e.g. number) and Django should remove these types from our point of view (at least with the admin interface). Moreover, form validation should not be moved to the frontend of the admin interface.

see https://code.djangoproject.com/ticket/23075 (although this ticket is marked with “fixed”, the behaviour is still inconsistent)

The Admin Index Site

Currently, the admin index site reflects the structure of your applications/models. We don’t think editors (who use the admin site) are interested in the structure of your project/applications. What they want is the most reasonable list of models, divided into different sections (not necessarily apps).

see http://code.djangoproject.com/ticket/7497

The App Index

Again, we don’t think customers/editors are interested in your apps.

Related Lookups

With either raw_id_fields or Generic Relations, the representation for an object should be displayed beneath the input-field.
When changing the object-id (or selecting an object with the related pop-up window) the representation should be updated.

This issue is solved with Grappelli (unfortunately overly complex due to the limitations of the original admin interface).

Autocompletes

As an alternative to Related Lookups it should also be possible to implement Autocompletes. Grappelli includes Autocompletes, but it should be possible without hacking the admin-interface.

Help text and Many-to-Many Fields

The help_text doesn’t show up with M2M-Fields, when using the RawID-Widget (e.g. with Autocompletes). Nothing we can do about that.

Searching Generic Relations

It’s not possible to use a content_object within search_fields.

Javascript loading

Unfortunately, it’s not possible to combine all django javascripts.

Admin Documentation

The document structure of the admin_doc templates is messy (about every second template has a different structure). Therefore, it’s hard to style these pages. Trying to do our best to give it a decent look though.

HTML/CSS Framework

For the admin interface to be customizable, flexible and extensible, we need a coherent HTML/CSS scheme.

We do think that Grappelli is a first step.

Grappelli 2.14.x Release Notes

Grappelli 2.14.x is compatible with Django 3.0.

Update from Grappelli 2.13.x

	Update Django to 3.0 and check https://docs.djangoproject.com/en/3.0/releases/3.0/

	Update Grappelli to 2.14.x

Contributing

We are happy to see patches and improvements with Grappelli. But please keep in mind that there are some guidelines you should follow.

To file an issue with Grapelli, see contributing [https://github.com/sehmaschine/django-grappelli/blob/master/CONTRIBUTING.rst] on github.

Requirements

For working with Javascript and CSS, you need Node [http://nodejs.org], Ruby [https://www.ruby-lang.org], Grunt [http://gruntjs.com], Sass [http://sass-lang.com] and Compass [http://compass-style.org]. In order to update the documentation, Sphinx [http://sphinx-doc.org] and the Sphinx RTD Theme [https://github.com/snide/sphinx_rtd_theme] have to be installed. Finally, you should install flake8 [https://flake8.readthedocs.org] when working with python files.

It’s out of the scope of this tutorial to go into details, but you should find lots of useful references on how to install these dependencies.

Node is needed for Grunt, Ruby for Sass/Compass:

brew install node
brew install ruby

Now you are able to install Grunt and Compass (Sass is automatically installed with Compass):

npm install -g grunt-cli
gem install compass

Change to the root of your grappelli installation, where package.json and Gruntfile.js are located and install the Grunt dependencies:

npm install

Start your virtual environment and install the python dependencies:

pip install sphinx
pip install sphinx-rtd-theme
pip install flake8

Branches

Please commit to the stable branch of a specific Grappelli version and do not use the master branch.
For example, in order to send pull-requests for Grappelli 2.7, use the branch stable/2.7.x.

Python

When working with python files, please refer to the Django Coding Guidelines [https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/]. Grappelli includes a grunt task which checks for coding errors (you should always use this task if you update .py files):

grunt flake8

Note

flake8 has to be installed in order for this task to work.

Javascripts & Stylesheets

If you change any of the Grappelli javascripts, you need to jshint the files and create grappelli.min.js:

grunt javascripts

When working with CSS (which is .scss in our case), you have to compile with:

grunt compass

Documentation

If you update documentation files, there’s a grunt task for building the html files (this is not needed with a pull-request, but you might wanna check your updates locally):

grunt sphinx

Watch

You can use grunt watch or just grunt in order to check for live update on js/scss files as well as the documentation and run the necessary grunt tasks in the background while working.

Changelog

2.14.2 (not yet released)

2.14.1 (February 10th, 2020)

	First release of Grappelli which is compatible with Django 3.0.

Index

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Documentation

 		
 Quick start guide

 		
 Installation

 		
 Setup

 		
 Testing

 		
 Customization

 		
 Available Settings

 		
 Collapsibles

 		
 Inline Sortables

 		
 GrappelliSortableHiddenMixin

 		
 Sortable Excludes

 		
 Rearrange Inlines

 		
 Related Lookups

 		
 Autocomplete Lookups

 		
 Using TinyMCE

 		
 Changelist Templates

 		
 Filters as drop-down, automatically applied (default template)

 		
 Filters as drop-down, manually applied

 		
 Filters in a sidebar, automatically applied

 		
 Filters in a sidebar, manually applied

 		
 Changelist Filters

 		
 Switch User

 		
 Clean input types

 		
 Dashboard Setup

 		
 Custom dashboard

 		
 Custom dashboards for multiple sites

 		
 Dashboard API

 		
 The Dashboard class

 		
 The DashboardModule class

 		
 The Group class

 		
 The LinkList class

 		
 The AppList class

 		
 The ModelList class

 		
 The RecentActions class

 		
 The Feed class

 		
 Internals

 		
 Templates

 		
 Javascripts

 		
 Original Javascripts

 		
 Grappelli Javascripts

 		
 Help

 		
 FAQ

 		
 Why should I use Grappelli?

 		
 I need help!

 		
 Which Browser do I need with Grappelli?

 		
 Can I use another editor than TinyMCE?

 		
 Why don’t you use Twitter Bootstrap?

 		
 Do you guys cooperate with the Django–Devs?

 		
 How can I contribute?

 		
 What is your goal with Grappelli?

 		
 Who develops Grappelli?

 		
 Best Practice

 		
 M2M horizontal/vertical

 		
 Radiolists/Checkboxlists

 		
 Third Party Applications

 		
 Troubleshooting

 		
 Django Issues

 		
 Harcoded Stuff

 		
 Javascripts

 		
 Reordering Edit-Inlines

 		
 HTML5 input types

 		
 The Admin Index Site

 		
 The App Index

 		
 Related Lookups

 		
 Autocompletes

 		
 Help text and Many-to-Many Fields

 		
 Searching Generic Relations

 		
 Javascript loading

 		
 Admin Documentation

 		
 HTML/CSS Framework

 		
 Grappelli 2.14.x Release Notes

 		
 Contributing

 		
 Changelog

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

